Variance-Covariance Matrix for a CPN Model
vcov.cpn.Rd
Computes the variance-covariance matrix of parameter estimates from a fitted Compound Poisson-Normal (CPN) regression model using the numerical Hessian of the negative log-likelihood.
Usage
# S3 method for class 'cpn'
vcov(object, ...)
Arguments
- object
An object of class
"cpn"
returned by thecpn
function.- ...
Additional arguments (currently unused).
Value
A variance-covariance matrix of the model parameters. Rows and
columns are named
according to the model parameters (regression coefficients, mu
,
and sigma
).
If the Hessian is singular, contains NA
values, or is otherwise
invalid, a matrix
of NA
values is returned with an appropriate warning.
Details
The Hessian matrix of the negative log-likelihood is computed using
numerical finite differences
(via the hessian
function). The variance-covariance
matrix is then obtained
by inverting this Hessian. The result reflects local curvature and can be
used to compute standard
errors and confidence intervals for the parameters.
Examples
set.seed(123)
df <- data.frame(x = rnorm(100))
df$y <- sapply(exp(0.5 * df$x), function(lam) {
k <- rpois(1, lam)
if (k == 0) return(0)
sum(rnorm(k, mean = 1, sd = 1))
})
fit <- cpn(y ~ x, data = df)
vcov(fit)
#> (Intercept) x mu sigma
#> (Intercept) 0.019229096 -0.0053012925 -0.007015153 -0.0042571726
#> x -0.005301292 0.0169143475 -0.002521948 0.0008552595
#> mu -0.007015153 -0.0025219477 0.016074768 0.0035950679
#> sigma -0.004257173 0.0008552595 0.003595068 0.0145751698