Summarize a Compound Poisson-Normal (CPN) Model Fit
summary.cpn.Rd
Produces a summary for a fitted cpn
model object, including parameter
estimates,
standard errors, z-values, p-values, deviance residual summaries, and model
diagnostics.
Usage
# S3 method for class 'cpn'
summary(object, ...)
Arguments
- object
An object of class
"cpn"
, seecpn()
.- ...
Additional arguments (currently ignored).
Value
An object of class summary.cpn
, which is a list containing:
- call
The matched call that generated the model.
- summary_table
A data frame with parameter estimates, standard errors, z-values, and p-values.
- deviance_summary
A five-number summary (Min, 1Q, Median, 3Q, Max) of deviance residuals.
- mu
Estimated value of the Normal component mean.
- sigma
Estimated value of the Normal component standard deviation.
- null_deviance
Null deviance of the model.
- residual_deviance
Residual deviance of the model.
- df_null
Degrees of freedom for the null model.
- df_residual
Degrees of freedom for the residual model.
- aic
Akaike Information Criterion for model comparison.
Examples
set.seed(123)
data <- simulate_cpn_data()
# Sequential analysis of deviance
fit <- cpn(y ~ x1 + x2, data = data)
summary(fit)
#> Call:
#> cpn(formula = y ~ x1 + x2, data = data)
#>
#> Deviance Residuals:
#> Min 1Q Median 3Q Max
#> -2.871 -2.059 -1.269 2.181 3.745
#>
#> Coefficients:
#> Estimate Std.Error z.value Pr.z
#> (Intercept) 0.63754 0.15190 4.1969 2.705e-05 ***
#> x1B -0.60713 0.22934 -2.6473 0.008114 **
#> x2 0.53609 0.10791 4.9679 6.767e-07 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Estimated mu parameter: 0.9600
#> Estimated sigma parameter: 1.7062
#>
#> Null deviance: 478.20 on 99 degrees of freedom
#> Residual deviance: 449.74 on 95 degrees of freedom
#> AIC: 459.74